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A refined "lumped-capacity" model has been proposed for description of the process of formation of a tem-
perature field in the isotropic half-space–thermoactive spacer–thermal protective coating system exposed to
the external heat flux; the determining parameter of this model has been identified and the possibility of
using it in practice has been substantiated.

Investigations of the processes of formation of temperature fields in conjugate solid bodies occupy a special
place in applications of mathematical heat-conduction theory [1–4]. Their results are important in solving the problem
(of practical importance) of development of the efficient methods of thermal protection of structures [5–8]. The appli-
cation of thermoelectric phenomena (Peltier and Thompson effects [9, 10]) to control the temperature state of a struc-
ture or to its thermostatting is promising in this field. One basic element of a thermoelectric thermal-protection system
is a thermoactive spacer (gasket) [11], in which we have the release or absorption of heat with a prescribed specific
power as a result of external controlled actions.

In the simplest case the structure is simulated by an isotropic half-space, and a parametric analysis of the tem-
perature field in the half-space with a thermoelectric thermal-protection system is made with a mathematical model
containing specific conjugation conditions [11]. In the general case these conditions are nonstationary and ensure the
equality of temperatures on the contact surface and the discontinuity of heat fluxes [11]. The difficulties to be sur-
mounted in parametric analysis of the temperature field in the system under study are well known, as are assumptions
of different kinds [11–15] whose realization leads to simplified analogs of the mathematical models used.

In [11], we have proposed and substantiated a mathematical model of the process of formation of a tempera-
ture field in the isotropic half-space–thermoactive thermally thin spacer–thermal protective coating system exposed to
the external heat flux. The development of a simplified analog of this model was the prime objective of the investiga-
tions carried out. As the optimality criterion of the simplified analog of the initial model, we used the minimax crite-
rion for the modulus of the difference of integral values of the heat loss [12, 15] in the thermal protective coating
which had been determined with the initial and simplified models. This enabled us to use the one-dimensional model
of the process studied as the object of investigations.

Initial Model and Its Simplified Analog. A one-dimensional mathematical model of the process of formation
of a temperature field in the isotropic half-space–thermoactive thermally thin spacer with a constant specific heat-ab-
sorption power Qs–thermal protective coating system exposed to the nonstationary heat flux Q0 (Fig. 1) can be repre-
sented in the form [13]

∂θ (y, Fo)

∂Fo
 = 

∂2θ (y, Fo)

∂y
2  ,   Fo > 0 ,   y > ε ; (1)

ε∗ 
d sθ (Fo)t

dFo
 = 

∂θ (y, Fo)
∂y



y=ε+0

 − Λ 
∂θ (y, Fo)

∂y



y=0−0

 − Qs ,   Fo > 0 ,   0 < y < ε ; (2)
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∂θ (y, Fo)
∂Fo

 = χ2
 
∂2θ (y, Fo)

∂y
2  ,   Fo > 0 ,   − h < y < 0 ; (3)

θ (y, Fo)Fo=0 = sθ (Fo)tFo=0 = 0 ; (4)

∂θ (y, Fo)
∂y



y=−h

 = − 
Q0

Λ
 ;

(5)

θ (y, Fo)y=ε+0 = sθ (Fo)t = θ (y, Fo)y=0−0 ; (6)

θ (y, Fo)Fo>0 2 L
2
 [ε, + ∞) , (7)

where the last condition means that the function θ(y, Fo) is integrable with square in the spatial variable y 2 [ε, +∞]
for each fixed Fo > 0.

In the mathematical model (1)–(7), we have

θ = 
T − T0

T0

 ,   y = 
z

z∗
 ,   z∗ = l2 √a1

 ⁄ a2  ,   Fo = 
a1t

z∗
2  ,   ε = 

l3

z∗
 ,   ε∗ = ε 

λ3a1

λ1a3

 ,   Λ = 
λ2

λ1

 ,

Qs = 
W
__

z∗
λ1T0

 ,   χ2
 = 

a2

a1
 ,   h = 

l2
z∗

 ,   Q0 = 
q0z∗
λ1T0

 ,   sθ (Fo)t = 
1

ε
 ∫ 
0

ε

θ (y, Fo) dy .

For the purpose in hand we introduce into consideration the temperature mean-integral over the thermal pro-
tective coating

θ
__

 (Fo) = 
1
h

 ∫ 
−h

0

θ (y, Fo) dy 
(8)

and, according to (3) and (8), arrive at the equation

Fig. 1. Diagram of the analyzed system: 1) isotropic half-space; 2) thermal
protective coating; 3) thermoactive spacer.
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dθ
__

 (Fo)
dFo

 = 
χ2

h
 




∂θ (y, Fo)
∂y



y=0−0

 − 
∂θ (y, Fo)

∂y



y=−h+0




 ,

which, with account for (2) and (5), can be transformed to the following form:

Kε 
dθ
__

 (Fo)
dFo

 = 
∂θ (y, Fo)

∂y



y=ε+0

 − ε∗ 
d sθ (Fo)t

dFo
 + [Q0 − Qs] , (9)

where the criterion Kε = λ2√a1
 ⁄ (λ1√a2 ) characterizes the thermal activity of the thermal protective coating in relation to

the half-space and takes on values on the half-open interval (0; 1] [2]. If we assume that heat-exchange in the half-space–
thermal-protective coating system is realized by the Newton law with an unknown parameter µ [12, 14, 15]:

∂θ (y, Fo)
∂y



y=ε+0

 = µ 



θ (y, Fo)y=ε+0 − θ

__
 (Fo)


 ,

then, taking account of (1), (4), (6), (9), and (7), we arrive at a simplified analog of the initial model (1)–(7):

∂θ (y, Fo)

∂Fo
 = 

∂2θ (y, Fo)

∂y
2  ,   Fo > 0 ,   y > ε ;

Kε 
dθ
__
 (Fo)

dFo
 = 

∂θ (y, Fo)
∂y



y=ε+0

 − ε∗ 
∂θ (y, Fo)

∂Fo



y=ε+0

 + [Q0 − Qs] ,   Fo > 0 ;

θ
__

 (Fo)Fo=0 = θ (y, Fo)Fo=0 = 0 ;

∂θ (y, Fo)
∂y



y=ε+0

 = µ 



θ (y, Fo)y=ε+0 − θ

__
 (Fo)


 ;

θ (y, Fo)Fo > 0 2 L
2
 [ε, + ∞) . (10)

Following the established terminology [12, 14, 15], the initial mathematical model (1)–(7) of the process
under study will be called the "accurate" model, whereas its simplified analog (10) will be referred to as the refined
"lumped-capacity" model. Also, we note that the parameter µ is to be identified, and an equivalent representation of
the mathematical model (10) is possible:

∂θ (y, Fo)

∂Fo
 = 

∂2θ (y, Fo)

∂y
2  ,   Fo > 0 ,   y > ε ;

(Kε + ε∗) 
∂θ (y, Fo)

∂Fo
 = 

Kε
µ

 
∂2θ (y, Fo)
∂Fo ∂y

 + 
∂θ (y, Fo)

∂y
 + [Q0 − Qs] ,   Fo > 0 ,   y = ε + 0 ;

θ (y, Fo)Fo=0 = 0 ;   θ (y, Fo)Fo>0 2 L
2
 [ε, + ∞) . (11)

Identification of the Parameter µµ. For the sake of convenience we introduce the subscript j 2 p1, 2q and
will assume that j = 1 corresponds to the "accurate" model (1)–(7), whereas j = 2 corresponds to the refined "lumped-
capacity" model (11). Thus, in what follows, the function θj(y, Fo) determines the temperature field under study with
the initial mathematical model (1)–(7) for j = 1 and its simplified analog (11) for j = 2.
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To solve the problem of identification of the parameter µ contained in the mathematical model (11) we use
the existing approach [12, 15]. For its realization we introduce into consideration the following functionals:

Qp (Fo) = − ∫ 
0

Fo

 
∂θ (y, τ)

∂y



y=−h

 dτ , (12)

the quantity of heat, put into the thermal protective coating over the period Fo > 0;

Qhj (Fo) = − ∫ 
0

Fo

 
∂θj (y, τ)

∂y



y=ε+0

 dτ ,
(13)

the quantity of heat received by the shielded half-space over the period Fo and determined with the jth model, where
j 2 p1, 2q;

Wj = 
Qhj

Qp
 ,   j 2 p1, 2q (14)

are the integral values of the heat loss [12] in the thermal protective coating, determined with the initial model (j = 1)
and its simplified analog (j = 2). Since W1 = W1(Fo, γ) and W2 = W2(Fo, γ, µ), where γ = [ε∗, Λ, χ]t 2 Γ ½ R3 is the
vector of determining parameters of the initial model (1)–(7) and its simplified analog (11), the problem of identifica-
tion of the parameter µ can be represented in the form of a minimax optimization problem:

max
Fo>0
γ2Γ

  W1 (Fo, γ) − W2 (Fo, γ, µ) → min
µ

 . (15)

To determine the integral values of the heat loss pWjqj=1
2  in the thermal protective coating of the considered

system half-space–thermoactive thermally thin spacer–thermal protective coating, we represent the initial mathematical
model (1)–(7) and its simplified analog (11) in the image space of the integral Laplace transform by a parameter
s 2 C [2]:

Uj (y, s) = L [θj (y, Fo)] B ∫ 
0

∞

exp (− sFo) θj (y, Fo) dFo ,   j 2 p1, 2q ;

U (s) = L [sθ (Fo)t] . (16)

In the image space, the "accurate" model (j = 1) can be represented as follows:

sU1 (y, s) = 
d

2
U1 (y, s)

dy
2  ,   y > ε ;

ε∗sU (s) = 
dU1 (y, s)

dy



y=ε+0

 − Λ 
dU1 (y, s)

dy



y=0−0

 − 
Qs

s
 ;

s

χ2 U1 (y, s) = 
d

2
U1 (y, s)

dy
2  ,   − h < y < 0 ;   

dU1 (y, s)

dy



y=−h

 = − 
Q0

sΛ
 ;
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U1 (y, s)y=ε+0 = U (s) = U1 (y, s)y=0−0 ;   U1 (y, s)s2C 2 L
2
 [ε, + ∞) .

It unambiguously determines the integral Laplace transform (16) of the temperature field under study, in particular:

U1 (y, s)y≥ε = 




2Q0 exp (− √s ) − Qs [1 + exp (− 2√s)]


 exp [− (y − ε) √s ]

s√s  

1 + ε∗√s  + Kε




 




1 + ε∗√s  − Kε

1 + ε∗√s  + Kε
 exp (− 2√s ) + 1





 . (17)

In the image space, the refined "lumped-capacity" model (j = 2) represented in the form (11) has the following form:

sU2 (y, s) = 
d

2
U2 (y, s)

dy
2

 ,   y > ε ;

(Kε + ε∗) sU2 (y, s) = 




Kε

µ
 s + 1




 
dU2 (y, s)

dy
 + 

Q0 − Qs

s
 ,   y = ε + 0 ;

U2 (y, s)s2C 2 L
2
 [ε, + ∞) .

It also unambiguously determines the integral Laplace transform (16) of the temperature field studied but correspond-
ing to the simplified analog of the initial model now (1)–(7). In particular,

U2 (y, s)y≥ε = 
Q0 − Qs

s√s  




Kε

µ
 s + (Kε + ε∗) √s  + 1





 exp [− (y − ε) √s ] . (18)

Using equalities (12), (13), and (16)–(18) and the theorem on integration of the original function [2], we find
the transforms:

L [Qp (Fo)] = Q0Λ
−1

L [Fo] ,

L [Qh1 (Fo)] = 
2Q0 exp (− √s) − Qs [1 + exp (− 2√s )]

s
2
 

(1 + ε∗√s  − Kε) exp (− 2√s ) + (1 + ε∗√s  + Kε)





 ;

L [Qh2 (Fo)] = 
Q0 − Qs

s
2
 Kεµ

−1
s + (Kε + ε∗) √s  + 1

 .

(19)

Thus, taking account of (14) and (19) and of the theorem on integration of the transform, we can state that

L [W1 (Fo, γ) − W2 (Fo, γ, µ)] = L 




Qh1 (Fo) − Qh2 (Fo)

Q0FoΛ−1





= 
Λ

Q0

 ∫ 
s

∞ 









2Q0 exp (− √p ) − Qs [1 + exp (− 2√p)]



(1 + ε∗√p  − Kε) exp (− 2√p ) + (1 + ε∗√p  + Kε)





 − 
Q0 − Qs

(Kεµ
−1

p + (Kε + ε∗) √p  + 1)










 
dp

p
2  . (20)

In investigations with the use of integral transformations, one usually does not assume that one functional or
another is the original function of the integral transform used [1–3, 12]. In this case, too, we have implicitly assumed
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that all the functionals in question are the original functions of the integral Laplace transform of a time variable Fo.
Therefore, it is necessary to determine the condition of convergence of the improper integral on the right-hand side of
the last equality (20), since only in this case will the difference of the integral values of the heat loss in the thermal
protective coating of the system in question, which have been determined with the initial model (1)–(7) and its sim-
plified analog (11), be the original function of the integral Laplace transform.

The improper integral on the right-hand side of the last equality (20) has a singularity at s = 0 2 C and al-
lows, in the vicinity of this point, the following representation:

 ∫ 
s

∞




ψ (p)

ϕ (p)
 − 

Q0 − Qs

ω (p)




 
dp

p
2  = ∫ 

s

∞
ψ (p) ω (p) − (Q0 − Qs) ϕ (p)

ϕ (p) ω (p) p2  dp ,

ψ (p) = 2Q0 exp (− √p) − Qs [1 + exp (− 2√p )]

= 2 (Q0 − Qs) + ∑ 

k=1

∞

(− 1)k p
k ⁄ 2

k!
 (2Q0 − 2

k
Qs) ,

ϕ (p) = (1 + ε∗√p  − Kε) exp (− 2√p ) + (1 + ε∗√p  + Kε)

= 2 + 2 (1 + ε∗√p  + Kε) √p  + ∑ 

k=2

∞

(− 1)k pk ⁄ 2 
2

k

k!
 



1 − Kε − 

k
2

 ε∗



 ,

ω (p) = Kεµ
−1

p + (ε∗ + Kε) √p  + 1 .

Thus, in the vicinity of the singular point s = 0 2 C, we have

ψ (p) ω (p) − (Q0 − Qs) ϕ (p) D o (p√p ) ,

and the improper integral in question converges only for

µ = 2 



1 − 

Qs

Q0




 Kε ,

(21)

since otherwise, in the vicinity of the singular point s = 0 2 C, we obtain

ψ (p) ω (p) − (Q0 − Qs) ϕ (p) D o (p),

and the integrand is equivalent to the function p−1.
Temperature Field. The temperature field of the isotropic half-space in the studied system isotropic half-

space–thermoactive thermally thin spacer–thermal protective coating is determined by the functional θ1(y, Fo) for
y ≥ ε, if the "accurate" model (1)–(7) is used, or by the functional θ2(y, Fo) for y ≥ ε, if the refined "lumped-capacity"
model (11) is used. These functionals are the original functions of the integral Laplace transform (16) for the images
U1(y, s) and U2(y, s) prescribed by equalities (17) and (18) respectively when y ≥ ε.

The image U1(y, s)y≥ε prescribed by equality (17) has a unique singular point s = 0 2 C, which is a branch
point. Therefore, for passage to the original function θ1(y, Fo)y≥ε it is sufficient to use the procedure of computation
of the Mellin integral from the standard closed loop enclosing the branch point s = 0 [2]:
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θ1 (y, Fo)y≥ε = 
2

π
 ∫ 
0

+∞
[Q0 − Qs cos (ρ)]

cos
2
 (ρ) + [ρε∗cos (ρ) + Kε sin (ρ)]2

 �cos [(y − ε) ρ] cos (ρ)

− [yε∗ cos (ρ) + Kε sin (ρ)] sin [(y − ε) ρ]� 
1 − exp (− ρ2

Fo)

ρ2  dρ ,   Fo ≥ 0 .
(22)

Also, the original function θ1(y, Fo) for y ≥ ε can be represented in the form of the sum of a uniformly convergent
functional series. Indeed, according to (17), we obtain

U1 (y, s)y≥ε = ∑ 

k=0

∞

U1k (y, s) ;

U1k (y, s) = 
(− 1)k

ε∗
 

[√s  + (1 − Kε) ε∗
−1

]
k

s√s  [√s  + (1 + Kε) ε∗
−1

]
k+1

× �2Q0 exp [− (y − ε + 2k + 1) √s] − Qs [1 + exp (− 2√s )] exp [− (y − ε + 2k) √s ]� ,   y ≥ ε ,   k ≥ 0 . (23)

Thus, if θ1k(y, Fo) is the original function of the transform U1k(y, s) for y ≥ ε, by virtue of the uniform convergence
of the expansion used and the linearity of the operator of reversal of the integral Laplace transform [2], we have

θ1 (y, Fo) = ∑ 

k=0

∞

θ1k (y, Fo) ,   y ≥ ε ,   Fo ≥ 0 . (24)

The main difficulty of realization of the approach described is that the original function of the transform
[s√s(√s  + b)n]−1 exp (−k√s), n 2 p0, 1, 2, ...q of interest is known just for n = 0 and n = 0 [2]. This original function
can be found for any n ≥ 2 with the use of the existing theorems of operational calculus [2]. Thus, e.g., when n = 2,
orienting ourselves to the use of the particular case of the Efros theorem [2]

F (s) = L [f (t)] ] L
−1

 




F (√s )
√s




 = 

1
√πt

 ∫ 
0

∞

exp 



− 
ρ2

4t




 f (ρ) dρ , (25)

we have

F (√s )

√s
 = 

exp (− k√s )

√s  (√s )2 (√s  + b)2
 ] F (s) = 

exp (− ks)

s
2
 (s + b)2

 .

In the case in question s01 = 0 and s02 = −b are the zeros of second order for the denominator of the transform F(s)
and, according to [2],

L
−1

 




1

s
2
 (s + b)2




 = lim

s→ 0
 

d

ds
 



s
2
 

exp (st)

s
2
 (s + b)2




 + lim

s→ −b
  

d

ds
 



(s + b)2 

exp (st)

s
2
 (s + b)2




 = b

−3
 [bt − 2 + (bt + 2) exp (st)] .

Using the retardation theorem [2], we find

f (t) = L
−1

 




exp (− ks)

s
2
 (s + b)2




 = b

−3
 [b (t − k) − 2 + [b (t − k) + 2] exp (− b (t − k))] η (t − k) .
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To obtain the final result it is sufficient to substitute the original function found into the right-hand side of equality
(25) and compute the corresponding integrals:

L
−1

 




exp (− k√s )

s√s  (√s  + b)2



 = 

4

b
2 √ t

π
 exp 




− 

k
2

4t




 − 

bk + 2

b
3  erfc 





k

2√t




 − 

2tb
2
 + bk − 2

b
3

× exp (b2
t + bk) erfc 





k

2√t
 + b√t




 .

In passing from the transform U2(y, s)y≥ε prescribed by equality (18) to the original function θ2(y, s)y≥ε, we
can have three different cases depending on the roots of the quadratic equation z2 + [µ(Kε + ε∗) ⁄ Kε]z + µ ⁄ Kε = 0 [2,
11]. In particular, for the temperature θ2(ε + 0, Fo) of the heat-insulated surface of the shielded half-space, we have
the following representations:

µ > 4Kε
 ⁄ (Kε + ε∗)

2
 ] θ2 (ε + 0, Fo)

= 
µ (Q0 − Qs)

Kε (b1 − b2)
 ∑ 

k=1

2

(− 1)k 



− 

1

bk
2 + 2 √Fo

π
 
1

bk

 + 
1

bk
2 exp (bk

2
Fo) erfc (bk√Fo)





(26)

for bk = 
µ(Kε + ε∗)

2Kε
 +(−1)k 

√µ2(Kε + ε∗)2 − 4µKε
2Kε

, k = 1, 2;

µ = 4Kε
 ⁄ (Kε + ε∗)

2
 ] θ2 (ε + 0, Fo)

= 
2µ (Q0 − Qs)

Kε
 



− 

1

b
3 + 2 √Fo

π
 

1

b
2
 + 

1 − bFo

b
3  exp (b2

Fo) erfc (b√Fo )




for b = 
µ(Kε + ε∗)

2Kε
;

µ < 4Kε
 ⁄ (Kε + ε∗)

2
 ] θ2 (ε + 0, Fo) = 2 (Q0 − Qs) 




√Fo

π
 − 

α
σ

 + 
1
βσ

 exp [(α2
 − β2) Fo]

× 



erfc (α√Fo ) 




αβ cos (2αβ Fo) − 

α2
 − β2

2
 sin (2αβ Fo)




 + 

2
√π

 exp (− α2
Fo)

×  ∫ 
0

β√Fo

 exp (y2) 



αβ sin [2α√Fo (β√Fo − y)] + 

α2
 − β2

2
 cos [2α√Fo (β√Fo − y)]




 dy




  



 ,

for α = 
µ(Kε + ε∗)

2Kε
, β = 

√4µKε − µ2(Kε + ε∗)2
2Kε

, and σ = 
µ
Kε

.

Results and Discussion. According to equality (21), the value of the determining parameter µ of the simpli-
fied analog of the initial mathematical model (1)–(7) is in direct proportion to the similarity simplex Kε which is a
measure of the relation of the thermal activities of the thermal protective coating and the isotropic half-space.

Theoretically we can have the following three situations: (1) µ < 0, the specific power of heat absorption in
the thermoactive spacer exceeds the density of the external heat flux, (2) µ = 0, the thermoactive spacer totally com-
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pensates for the external heat flux, and, (3) µ > 0, the thermoactive spacer only attenuates the action of the external
heat flux.

The temperature field in the shielded half-space with a thermoactive spacer under external thermal action can
be found with the integral-transformation method. In the case in question it is determined by equality (22). However,
practical realization of the obtained representation of the initial problem involves both overcoming certain difficulties
of the computational character and a considerable consumption of time.

The functional determining the studied temperature field can be represented as the sum of a uniformly con-
vergent functional series. But the employment of this approach involves two negative points: (1) difficulties arising in
parametric analysis of the process of formation of the temperature field in the system studied; (2) the necessity of
finding the original functions for integral Laplace transforms absent from the handbooks of operational calculus. Fur-
thermore, the rate of convergence of the functional series used leaves much to be desired (Fig. 2). At the same time,
we can be assured that the exact solution of the problem in question lies between the found particular sums of this
functional series of the orders k and k + 1.

The representation of (26) of the temperature field studied that has been obtained with the simplified analog
(10) (refined "lumped-capacity" model) of the initial mathematical model (1)–(7) is very convenient for practical reali-
zation. An analysis of the results of computational experiments partially illustrated in Fig. 3 enables us to assume that
we can use the obtained simplified analog of the initial mathematical model in practice, for which purpose we must
only determine the domain of permissible values of the vector of its parameters.

This work was carried out with financial support from the program "Development of Scientific Potential of
Higher School (2006–2007)," project RNP 2.1.1.2381.

NOTATION

a, thermal diffusivity, m2 ⁄ sec; C, set (field) of complex numbers; Fo, Fourier number; erfc(⋅), complemen-
tary Gauss error function; i, imaginary unit; L[⋅] and L−1[⋅], operators of direct and inverse integral Laplace trans-
forms; L2[ε, +∞), linear space of functions integrable with square on the semiinfinite interval [ε, +∞); h, dimension-
less thickness of the thermal protection coating; Kε, similarity simplex as a measure of the relation of the thermal
activities of the thermal protective coating and the half-space; l2, thickness of the thermal protective coating, m; l3,
thickness of the thermoactive spacer, m; o(p), infinitesimal of the order p; Q0, dimensionless density of the exter-

Fig. 2. Time dependences of the dimensionless temperature of the heat-insu-
lated surface of a shielded half-space (ε∗ = 1, Kε = 0.23, Q0 = 2, and Qs = −1)
determined with the accurate model according to equalities (22) (curve 1) and
(23) and (24) for y = ε + 0 (2) k = 0, 3) 1, 4) 2, 5) 3, 6) 4, and 7) 5.

Fig. 3. Time dependences of the dimensionless temperature θj(ε + 0, Fo) of the
heat-insulated surface of a shielded half-space (ε∗ = 1, Kε = 0.23, Q0 = 2, and
Qs = −1) determined with the accurate model (j = 1) according to equality
(22) for y = ε + 0 (curve 1) and its simplified analog (j = 2) with the use of
equality (26) (curve 2).
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nal heat flux; Qs, dimensionless specific power of heat absorption of the thermally thin spacer; q0, density of the
external heat flux, W ⁄ m2; s 2 C, parameter of integral Laplace transformation; T, temperature, K; t, time, sec; y,
dimensionless space coordinate; z, space coordinate, m; z∗, selected unit of scale, m; ε, dimensionless thickness of
the thermoactive spacer; ε∗, dimensionless criterial parameter; η(⋅), Heaviside unit function; θ, dimensionless tem-
perature; sθt, mean-integral temperature over the thickness ε of the thermoactive spacer; θ

__
, mean-integral tempera-

ture over the thickness h of the thermal protective coating; Λ, dimensionless parameter characterizing the relative
thermal conductivity of the thermal protective coating; λ, thermal conductivity, W ⁄ (m⋅K); χ2, dimensionless parame-
ter characterizing the thermoinertial properties of the thermal protective coating relative to the half-space; µ, identi-
fied dimensionless parameter of the refined "lumped-capacity" model. Subscripts: s, spacer; p, put-in; h, shielded
half-space; t, transposition.
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